

High Temperature QCD

Cairns, Australia

Here : 330 Kelvin

Here : 330 Kelvin 10^3—10^8 Kelvin : EM Plasma

High temperature QCD

High temperature QCD @Lattice 2012

Pure YM, large N, models.

High Temperature QCD @ Colliders

High Temperature QCD @ Colliders Past, present,future

Thermodynamics: from hadronic phase to QGP

Eos – Conformal Anomaly – Transport

Equation of State:HISQ and StoutP. Petreczki (HotQCD) Monday

HISQ: HotQCD
Lat2012
Stout : Borsanyi et al.
1204.6710

□Nf = 2+1

Physical Quark Masses

□Nt =10, 12 no significant difference between stout and HISQ

High T QCD

Equation of state: Wilson fermions

Umeda (WHotQCD) Monday

Equation of state: Wilson at maximal twist

Burger (tmft) Monday

corrected

 $\Box Nf = 2$

Pion masses 400-700MeV

UWilson, maximal twist

EoS for Nf = 2+1+1

HISQ 2 + I + I
Lines of constant physics
Physical charm and strange masses
ml = ms/5 most likely ininfluent above peak

Heller (HotQCD) Monday

Early onset of charm contribution : T ≈350 MeV predicted by effective theory [Laine Schroeder 2006]

EoS for Nf = 2+1+1

EoS for Nf = 2+1+1

EoS : Detailed comparison between Stout and HISQ

EoS – 'discrepancy' a matter of extrapolation?

EoS for T = 300 MeV

EoS for T = 300 MeV

The transition region

Order Parameters Symmetry aspects of the chiral transition Fate of the UA(I) symmetry

The critical region

QCD Symmetries and lattice fermions

Patterns of Symmetries

2000: Cohen, Lee-Hatsuda, Cohen,.... lf: <qq> = 0 Then: (Nf - 2) $\chi\pi-\chi\delta \propto m$

New DevelopmentsAoki MondaySinglet susceptibility at high T
$$(2000: Cohen, Lee-Hatsuda, Cohen,)$$
 $\lim_{m \to 0} \chi^{\pi - \eta} = \lim_{m \to 0} \lim_{\chi \to \infty} \frac{N_f^2}{m^2 V^2} \langle Q(A)^2 \rangle_m = 0$ If:Both Cohen and Lee-Hatsuda are inaccurate. $(-qq) = 0$ This, however, does not mean U(1). A symmetry is recovered at high T. $(-qq) = 0$ $\lim_{m \to 0} \chi^{\pi - \eta} = 0$ Then : $\lim_{m \to 0} \chi^{\pi - \eta} = 0$ $(-\chi - \chi \delta \propto p)$ Stick courtesy $(-\chi \delta \propto p)$

Silde Courte S.Aoki

Domain wall fermions Lin, (RGB/HotQCD) Wedsnday Bazavov et al, HotQCD 1205.3535

- ≻ Nf = 2+1
- ≻ L5 = 96 ←
- > I6^3X8 HOTQCD
- > 32^3 X8 RBC/LLNL
- > 64^3X8 (ongoing)
- Kaon 'almost physical'
- Physical pion planned

Plots courtesy N. Christ and J.Lin

Eigenvalue Distrubition at $177~\mathrm{MeV}$

from linear part

Slide from Jasper Lin 's talk

Overlap Fermions Nf=2 m π = 200 MeV

Cossu (JLQCD) Monday

HISQ Fermions Nf = 2+ 1 m π =115–230 Mev

Ohno Thuersday

Plots courtesy H. Ohno

High T QCD

More to expect from chiral fermions

- Domain Wall Fermions
- 2 flavors
- Hsieh, Tuesday

(TWQCD Collaboration)

Hsieh Tuesday Krieg Monday and Borsanyi et al 1204.4889

- Overlap
- Krieg, Monday
- Topology Fixing (JLQCD)
- Nf=2 mπ = 350 MeV

Wilson fermions Nf=2+1

staggered continuum

0.1

0.12

T/m_o

0.14

0.16

Wilson continuum 🖾🖾🐼

1

0.8

0.6

0.4

0.2

0

0.08

 $\chi_{\rm s}/T^2$

Borsany et al. 1205.0440 Nogradi Monday

Agreement with continuum staggered results MeV 150 200 225 250 275 175 staggered continuum KXXX Wilson continuum 🖾 🖾 m_RΨ_RΨ_R / m_πʻ -0.01 -0.015 -0.02 -0.025 -0.03 -0.035 0.08 0.1 0.12 0.14 0.16 T/m_o High T QCD

QCD symmetries and order of transition

- Nf = 3 : 1° order
- Nf = 0 : 1° order (deconfinament)
- Nf = 2: order of the transition depends on coefficients : dynamical issue!

$$\mathcal{L}_{\mathrm{U}(N_f)} = \mathrm{Tr}(\partial_{\mu}\Phi^{\dagger})(\partial_{\mu}\Phi) + r\,\mathrm{Tr}\,\Phi^{\dagger}\Phi + \frac{u_0}{4}\left(\mathrm{Tr}\,\Phi^{\dagger}\Phi\right)^2 + \frac{v_0}{4}\,\mathrm{Tr}\left(\Phi^{\dagger}\Phi\right)^2$$

QCD symmetries and order of transition

- Nf = 3 : 1° order
- Nf = 0 : 1° order (deconfinament)
- Nf = 2: order of the transition depends on coefficients : dynamical issue!

$$\mathcal{L}_{\mathrm{U}(N_f)} = \mathrm{Tr}(\partial_{\mu}\Phi^{\dagger})(\partial_{\mu}\Phi) + r\,\mathrm{Tr}\,\Phi^{\dagger}\Phi + \frac{u_0}{4}\left(\mathrm{Tr}\,\Phi^{\dagger}\Phi\right)^2 + \frac{v_0}{4}\,\mathrm{Tr}\left(\Phi^{\dagger}\Phi\right)^2$$

For instance as a function μ^2 Of chemical potential

$\begin{array}{c} \mbox{Bonati, D'Elia, de Forcrand} \\ \mbox{Order changes with } \mu^2 & \mbox{Sanfilippo, Philipsen 2012} \end{array}$

Plots courtesy of Ph. De Forcrand

D

Staggered Nt=4

8

D. Cosmai et al 1202.5700 Cosmai, Monday

Order changes with μ^2

SU(3) n_f=2 staggered am=0.05

The transition becomes first order for large enough imaginary chemical potentials, but before one reaches the RW-like transition $(\mu/\pi T)_{\rm RW} \simeq 0.5i$

Plots courtesy M. D'Elia

Wilson Nf= 2 – Status of the transition in the continuum F. Burger (tmfT) Monday

Status of the Columbia plot

37

The transition region-II

Nf=0, Confinement Large Nf Q vacuum External Magnetic field

Nf=0 : SU(N) theories and effective U(1) -> monopoles Ogilvie Wednsday

SU(2) phase diagram $S \to S - \int d^3 x H_A |Tr_F P|^2$ U(I): confinement /deconfinement monopole 8 Ising limit Deconfined condensation. m=0Enlarge space : find 2nd order ABC continuous path between confined H pure gauge phase of SU(2) and m=∞ monopole dominated phase of U(I). 1st order PBC Lattice simulations in Crossover? Confined m=0progress [M. Panero] Semiclassical - 00 Т To U(I)

High T QCD

Nf =0, 2, 2+1,2+1+1, Many... The fate of the transition at large Nf

$$T_c(N_f) = K|N_f - N_f^c|^{-1/\theta}.$$

Braun, Gies 2006-2010

Recent lattice studies below Nfc

Deuzeman et al. 2008 Nf = 8 Jin and Mawhinnehy, 2009, Nf=8 Miura et al. 2011, Nf =4,6

Schaich Monday

New results for Nf=8

S⁴ phase signalled by order parameters (red and green, left) Transitions signalled by Polyakov loop (left) and eigenvalues (right)

High T QCD

The strength of the plasma with Nf Liao and Shuryak 1206.3989

Theta vacuum S = S_{QCD} + S_{θ} ($-\theta$ Q)

D'Elia and Negro 1205.0538 Negro Tuesday Sasaki Tuesday

Chiral Magnetic Effect: B =10^14 Tesla at QCD transition and Heavy Ion collisions!

Fluctuations

Results&comparison with analytic work Model studies

Lattice meets HT perturbation theory

Flux tube model

Patel, Friday A. Patel 1111.0177

Visualise gauge field dynamics in position space.

Can study multicorrelation particles which are useful for phenomenology

Nb : non sign problem at finite density

Quark Gluon Plasma

Exploring uncharted territories

Transport?

Mechanism of deconfinements

Large N methods?

Quarkonium suppressions?

Interactions?

Length scales?

Degrees of freedom in the plasma?

Validity of AdS/CFT?

Approach to free fields?

Potential&Quarkonia

- New Results for Nf = 2
- Schroedinger equation approach : extract potential from wavefunction
- Spectral functions measured as well
- Possible comparison of spectral functions and potential in analogous conditions – from same set of gauge fields

C. Allton Wedsnday

M. Panero Tuesday (Review) Mikkanen et al. JHEP 1205 (2012)

Analogous behaviour for different Nc lends support to large Nc approach to the QCD high T phase

Large Nc

SU(4), fundamental representation

Plots courtesy M. Panero

17 17.5 18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23 23.5 24 24.5 25 25.5

* 105

o 120

126

High T QCD

0.05

Kovacs Tuesday

600

500-

A new scale in the QGP

Eigenvalue distribution follow different distributions at low and high frequency: separation λc : mobility edge

Metastable states and Polyakov Loop Dynamics

- Z3 metastable states with dynamical fermions might have an important influence on the system behaviour (bubble formations, etc.)
- New study : find that metastable states become relevant for T > 750 MeV

Deka at al. 2011

Polyakov loop dynamics: rigorous approach (YM) Diakonov et al. 1243.3217

Free energy for untraced Polyakov loop X

$$: \mathcal{F}(T,X) = T \int_0^\beta d\beta' \langle S \rangle_{T,X,\beta'}$$

$$P = \frac{1}{V_3} \sum_{\vec{x}} \operatorname{Tr} \prod_{t=1}^{N_t} U_4(\vec{x}, t) = \operatorname{Tr} X ,$$

$$\langle S \rangle_{T,X,\beta'} = -\frac{\partial}{\partial \beta'} \ln \mathcal{Z}(T,X,\beta')$$

Quark Gluon Plasma & Colliders

Quarkonia Transport

High T QCD

T. Dahms CMS Hard Probes 2012

Bottomonia: with 2011 data

Ratios not corrected for acceptance and efficiency

Hard Probes 2012, Calgiari, 27 May - 1 June 2011

High T QCD

Brandt Tuesday

A look at propagators in real time

From Euclidean propagators to spectral functions via MEM: new method

Rhotkopf Friday

Kim Wedsnday

Bottomonium

Heavy Quark Momentum Diffusion Coefficient

S. Datta Thuersday

Summary – Hot QCD @ Lattice2012

- Bulk Thermodynamics : result in the continuum and at the physical point for staggered results well into the current LHC region are in good control. Residual discrepancies seem minor.
- Wilson fermions becoming competitive.Continuum limit (with largish masses).
- New analytic studies in the high T regime compare well with numerical results, building further confidence in the numerical results. Contact with free limits also established
- New high quality results for domain wall and overlap fermions, large scale simulations are being planned.
- Good chiral properties togheter with further theoretical insight trigger activity on axial symmetry.
- \diamond Details of QCD dynamics extremely important around the phase transitions: fate of the axial anomaly, order for Nf=2 , response to magnetic field, and to Θ therm are still unclear
- (Strongly coupled) Quark Gluon Plasma theoretical laboratory inspiring studies and contacts with other fields
- Lattice results for trasport and quarkonia compare well with RHIC and LHC experiments.