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QCD PHASE DIAGRAM
A POSSIBILITY
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QCD PHASE DIAGRAM

at nonzero quark chemical potential

[detD(µ)]∗ = detD(−µ∗)

fermion determinant is complex

straightforward importance sampling not possible

sign problem

⇒
phase diagram has not yet been determined
non-perturbatively
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MANY QCD PHASE DIAGRAMS
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OUTLINE

reminder: sign/overlap/Silver Blaze problems

techniques that avoid or eliminate sign problem:∗

sign problem free
milder sign problem (3D effective theories)
complex Langevin dynamics

conclusion

∗ I will not discuss “standard methods” at small µ (reweighting, Taylor
series, analytical continuation, histograms) or the strong coupling limit,
even though there were many interesting talks at the Conference. I
apologize if your work is not discussed!
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SIGN/OVERLAP/SILVER BLAZE PROBLEMS
GENERAL REMARKS

integrate out the quarks: complex detD(µ) = | detD(µ)|eiθ

sign problem due to complexity, not due to Grassmann
nature: also appears in bosonic theories with µ 6= 0

ignore the phase: | detD(µ)|, phase quenching (pq)

if pq 6= full, e.g. the pq theory has a transition to a
high-density phase at a lower critical µ than the full theory:

bad overlap problem: average sign

〈eiθ〉pq = Z/Zpq = e−Ω∆f ∆f = f − fpq

vanishes exponentially with 4-volume Ω

Silver Blaze problem: many cancelations to ensure
that onset happens at the right critical µ Cohen 03
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SIGN/OVERLAP/SILVER BLAZE PROBLEMS
GENERAL REMARKS

example: Nf = 2 QCD with [detD(µ)]2

phase-quenched: | detD(µ)|2 = detD(µ) detD(−µ)
⇒ isospin chemical potential

at T = 0:

isospin: onset at µ = mπ/2
full: onset at µ ∼ mN/3 (− binding energy)

Silver Blaze region: mπ/2 < µ . mN/3

intricate cancelations, e.g. eigenvalue density of Dirac
operator is complex, highly oscillatory, with exp. large
amplitude in thermodynamic limit

precise integration to get correct cancelations
Osborn, Splittorff & Verbaarschot 05
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THEORIES WITHOUT A SIGN PROBLEM
DETERMINANT IS REAL, EVEN WHEN µ > 0

prime example: two-color QCD (QC2D)

phase diagram can be determined Skullerud et al 12
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correct in QC2D

detailed analysis of singular values D†(µ)D(µ)ψn = ξ2nψn

(independent of Dirac eigenvalues) Wettig et al 12
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THEORIES WITHOUT A SIGN PROBLEM
DETERMINANT IS REAL, EVEN WHEN µ > 0

recent example: exceptional gauge group G2

bosonic (qq) and fermionic baryons (qqq) + hybrids (qggg)

onset presumably at diquark threshold, but indications
for a second rise in density at larger µ (not shown)

requires more precise spectrum calculations

avoid saturation Maas, Wellegehausen et al 12
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THEORIES WITH MILDER SIGN PROBLEM
STRATEGY

effective field theories/spin models may

have a milder sign problem

be reformulated without sign problem (flux, world line)∗

be solvable with complex Langevin

ideally

detailed mapping between effective couplings and
QCD parameters

use insight for QCD phase diagram

∗ see also Chandrasekharan & Li for fermion models
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EFFECTIVE SPIN MODELS
SIMPLEST EXAMPLE

3-dimensional SU(3) spin model

S = SB + SF

SB = −β
∑

<xy>

[

PxP
∗
y + P ∗

xPy

]

SF = −h
∑

x

[

eµPx + e−µP ∗
x

]

SU(3) matrices: Px = TrUx

gauge action: nearest neighbour Polyakov loops

(static) quarks represented by Polyakov loops

complex action S∗
F (µ) = SF (−µ

∗)
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EFFECTIVE SPIN MODELS
SIMPLEST EXAMPLE

very, very, very old model:

mean field solutions Banks & Ukawa 83

complex Langevin Karsch & Wyld 85

Bilic, Gausterer & Sanielevici 88

recent revival:

reformulated as a flux model without sign problem
Gattringer 11 (& Mercado 12)

re-addressed with complex Langevin GA & James 11

mean field analysis Greensite & Splittorff 12

part of family of high-order strong-coupling models
Philipsen et al 11
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SU(3) SPIN MODEL

GATTRINGER & MERCADO 12

flux representation (“high temperature” expansion):

expand Boltzmann weight

integral over powers of Polyakov loops at each site

find a monomer-dimer system with constraints

no sign problem: solved with Monte Carlo (or worm)
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EFFECTIVE SPIN MODELS
SYSTEMATIC EXTENSION

construct whole family of effective Polyakov loop models
Philipsen, Langelage, Lottini & Fromm 10, 11

integrate out spatial links in strong-coupling expansion

systematically improvable

include more Polyakov loop interactions

schematic form of action (without fermions):

S = λ1
∑

<xy>

(

PxP
∗
y + P ∗

xPy

)

+ λ2
∑

[xy]

(

PxP
∗
y + P ∗

xPy

)

+(higher order representations) + . . .
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EFFECTIVE SPIN MODELS
SYSTEMATIC EXTENSION

resum certain subclasess to all orders:

S = λ1
∑

<xy>

(

PxP
∗
y + c.c.

)

+· · · =
∑

<xy>

ln
[

1 + λ1(PxP
∗
y + c.c.)

]

+. . .

effective couplings λi depend on β and Nτ , e.g.:

λ1(u,Nτ = 4) = u4 exp

[

4

(

4u4 + 12u5 − 14u6 + . . .+
1035317

5120
u10 + . . .

)]

λ1(u,Nτ ≥ 5) = uNτ exp

[

Nτ

(

4u4 + 12u5 − 14u6 + . . .+
1055797

5120
u10 + . . .

)]

λ2(u,Nτ = 4) = u8
[

12u2 + 26u4 + 364u6 + . . .
]

u = u(β) = af (β) = β/18 + . . . (character expansion)

⇒ far beyond simplest SU(3) spin model
quantitative predictions?
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EFFECTIVE SPIN MODELS
SYSTEMATIC EXTENSION

forget strong coupling origin: view as effective model

complementary to dimensional reduction at high T and
weak coupling

test range of validity

expansion

T

µ

strong
coupling

weak coupling: dimensional reduction
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EFFECTIVE SPIN MODELS
SYSTEMATIC EXTENSION

example: pure gauge SU(3) Philipsen, Langelage & Lottini 10

determine one critical coupling λ1,c in 3D

relate λ1,c(β,Nτ ) to 4D critical coupling βc(Nτ )
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SPIN MODELS WITH QUARKS
HEAVY QUARKS AND NONZERO CHEMICAL POTENTIAL

hopping expansion

SF ∼ − ln det
[

(1 + heµ/TWx)(1 + he−µ/TW †
x)
]

Wx = untraced Polyakov loop, h = h(κ,Nτ )

determine phase diagram in heavy quark sector

mild sign problem (reweighting)
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SPIN MODELS WITH QUARKS
HEAVY QUARKS AND NONZERO CHEMICAL POTENTIAL

rich phase structure: interplay with centre-symmetry

RW line at µRW = iπT/3, RW endpoint at TRW:

first order (triple) point for light and heavy quarks

second order endpoint for intermediate mass quarks
Roberge-Weiss 86, d’Elia-Sanfilippo 09, de Forcrand-Phil ipsen 10

⇒ tricritical line in Columbia
plot at (µ/T )2 = −(π/3)2

tricritical scaling determines
curvature of critical surface

de Forcrand & Philipsen 10

Fromm-Langelage-Lottini-Philipsen 11

also in 3-state Potts model
Kim, de Forcrand et al 06
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COMPLEX INTEGRALS

consider simple integral

Z(a, b) =

∫ ∞

−∞

dx e−S(x) S(x) = ax2 + ibx

complete the square/saddle point approximation:

into complex plane

lesson: don’t be real(istic), be more imaginative

radically different approach:

complexify all degrees of freedom x→ z = x+ iy

enlarged complexified space

new directions to explore
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COMPLEX SADDLE POINTS

recent proposal (as an alternative to complex Langevin):

high-density QCD on a Lefschetz thimble?
Cristoforetti, di Renzo & Scorzato 12

deform integration contour into complex plane

associate (real) integration domain with each
stationary point (“thimble”)

path integral = sum over integrals over thimbles

imaginary parts should be subleading

motivated by Witten and Morse theory (!)

interesting idea – wait for implementation
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COMPLEXIFIED FIELD SPACE
COMPLEX WEIGHT ρ(x)

dominant configurations in the path integral?

x

 x)Reρ(  

⇒

y

x

real and positive distribution P (x, y): how to obtain it?

⇒ solution of stochastic process

complex Langevin dynamics
Parisi 83, Klauder 83

Lattice 2012, June 2012 – p. 15



COMPLEX LANGEVIN DYNAMICS
COMPLEX WEIGHT ρ(x)

does it work?

for real actions: stochastic quantization

equivalent to path integral quantization
Damgaard & Hüffel, Phys Rep 87

for complex actions: no formal proof

troubled past: “disasters of various degrees”
Ambjørn et al 86

why talk about it here? recent examples in which CL

can solve Silver Blaze problem

can handle severe sign problems

gives the correct result (!)

improved analytical understanding
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COMPLEX LANGEVIN DYNAMICS

various scattered results since mid 1980s

here:

review results obtained mostly with IO Stamatescu, E Seiler
and F James, starting with hep-lat/0807.1597

also with D Sexty, with K Splittorff, with J Pawlowski

Silver Blaze problem

severe sign problem

analytical insight

SU(3) spin model

more analytical insight
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SILVER BLAZE AND SIGN PROBLEM
BOSE GAS

relativistic Bose gas at nonzero µ, d = 4, m2 > 0

continuum action

S =

∫

d4x
[

|∂νφ|
2 + (m2 − µ2)|φ|2 + µ (φ∗∂4φ− ∂4φ

∗φ) + λ|φ|4
]

linear term in µ is imaginary

lattice action

S =
∑

x

[

(

2d+m2
)

φ∗

xφx + λ (φ∗

xφx)
2 −

4
∑

ν=1

(

φ∗

xe
−µδν,4φx+ν̂ + φ∗

x+ν̂e
µδν,4φx

)

]

S∗(µ) = S(−µ∗) as always
GA 08, 09
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SILVER BLAZE AND SIGN PROBLEM
BOSE GAS

at T = 0:

full theory: µ independence until onset, µc ∼ m

phase-quenched theory: always µ dependence

V (φ) = (m2 − µ2)|φ|2 + λ|φ|4

phase diagram
in full theory

Silver Blaze
problem

<φ> = 0

T

µ

<φ> = 0
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SIGN AND SILVER BLAZE PROBLEMS
BOSE GAS

density: (m = λ = 1)
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HOW SEVERE IS THE SIGN PROBLEM?
AVERAGE PHASE FACTOR

complex action e−S = |e−S |eiθ

average phase factor in phase quenched theory

〈eiθ〉pq =
Z

Zpq

= e−Ω∆f

Ω → ∞, µ 6= 0
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ONE-DIMENSIONAL QCD
SILVER BLAZE

exactly solvable Gibbs 86, Bilic & Demeterfi 88

phase quenched: transition at µ = µc, full: no transition

severe sign problem when |µ| > |µc|

chiral condensate:
write as integral over spectral density

Σ =

∫

d2z
ρ(z;µ)

z +m
µc = arcsinhm

ρ(z;µ) complex and oscillatory Ravagli & Verbaarschot 07

condensate independent of µ: Silver Blaze

solve with complex Langevin GA & Splittorff 10
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ONE-DIMENSIONAL QCD
SILVER BLAZE

exact results reproduced

discontinuity at µc = 0 in thermodynamic limit n→ ∞

-2 -1 0 1 2

µ
c
 = arcsinh m
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Σ

n=4
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µ=1

sign problem severe when |µc| < |µ|

condensate independent of µ: Silver Blaze
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ONE-DIMENSIONAL QCD
ANALYTIC SOLUTION IN THERMODYNAMIC LIMIT

elegant analytical solution:

original distribution:

ρ(x) ∼ en(µ−µc)einx

when n→ ∞

real distribution
sampled by
complex
Langevin:

exp(n)

c

µ−µc

µ

(x)ρ
1/n

µ+µ

1

y

x

P(x,y)

P (x, y) =

{

1 µ− µc < y < µ+ µc

0 elsewhere

Lattice 2012, June 2012 – p. 22



TROUBLED PAST
OF COMPLEX LANGEVIN DYNAMICS

1. numerical problems: runaways, instabilities

⇒ adaptive stepsize

no instabilities observed, works for SU(3) gauge theory
GA, FJ, ES & IOS 09

a la Ambjorn et al 86

2. theoretical status unclear

⇒ detailed analyis, identified necessary conditions
GA, FJ, ES & IOS 09-12

3. convergence to wrong limit

⇒ better understood but not yet resolved
in progress
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ANALYTICAL UNDERSTANDING
SKETCH

consider expectation values and Fokker-Planck equations

one degree of freedom x, complex action S(x), ρ(x) ∼ e−S(x)

wanted: 〈O(x, t)〉ρ =

∫

dx ρ(x, t)O(x)

∂tρ(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

solved with CLE:

〈O(x, t)〉P =

∫

dxdy P (x, y; t)O(x+ iy)

∂tP (x, y; t) = [∂x (∂x −Kx)− ∂yKy]P (x, y; t)

with Kx = −ReS′, Ky = −ImS′

question: 〈O(x, t)〉P = 〈O(x, t)〉ρ ?
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ANALYTICAL UNDERSTANDING
SKETCH

question: 〈O(x, t)〉P = 〈O(x, t)〉ρ as t→ ∞ ?

answer: yes, provided some conditions are met:

distribution P (x, y) should drop off fast enough in y
direction

partial integration without boundary terms possible

actually O(x+ iy)P (x, y) for large enough set O(x)

⇒ distribution should be sufficiently localized

can be tested numerically via criteria for correctness

〈LO(x+ iy)〉 = 0

with L Langevin operator 0912.3360, 1101.3270
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SU(3) SPIN MODEL
DETAILED TESTS

apply these ideas to 3D SU(3) spin model GA & James 11

earlier solved with complex Langevin Karsch & Wyld 85

Bilic, Gausterer & Sanielevici 88

however, no detailed tests performed

⇒ test reliability of complex Langevin using developed tools

analyticity in µ2:
from imaginary to real µ
Taylor series

criteria for correctness

comparison with flux formulation Gattringer & Mercado 12
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SU(3) SPIN MODEL
REAL AND IMAGINARY POTENTIAL

first-order transition in β − µ2 plane, 〈P + P ∗〉/2
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SU(3) SPIN MODEL
REAL CHEMICAL POTENTIAL

immediate splitting between 〈P 〉 and 〈P ∗〉: no Silver Blaze
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SU(3) SPIN MODEL
STEPSIZE DEPENDENCE

left: 〈P 〉 (top) and 〈P ∗〉 (bottom) at µ = 3

right: criteria for correctness 〈LO〉 = 0
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improved stepsize algorithm to eliminate linear dependence

criteria satisfied as stepsize ǫ→ 0
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SU(3) SPIN MODEL
FLUX REPRESENTATION

comparison with result obtained using flux representation
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complex Langevin passes all the tests: why?

localized distribution: fast decay in imaginary direction

real manifold is stable under small fluctuations

Haar measure plays essential role
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STABILIZING DRIFT
HAAR MEASURE, JACOBIANS

Haar measure contribution to complex drift restoring

controlled exploration of the complex field space

compare with XY/U(1) model: trivial Haar measure
CLE fails in part of phase diagram GA & James 10

employ this: generate Jacobian by field redefinition

Z =

∫

dx e−S(x) x = x(u) J(u) =
∂x(u)

∂u

=

∫

du e−Seff(u) Seff(u) = S(u)− ln J(u)

drift: K(u) = −S′
eff(u) = −S′(u) + J ′(u)/J(u)

which field redefinition? singular at J(u) = 0 but should be
restoring in complex plane
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FUN WITH COMPLEX LANGEVIN
STABILIZING JACOBIANS

Gaussian example: defined when Re(σ) = a > 0

Z =

∫ ∞

−∞

dx e−
1

2
σx2

σ = a+ ib 〈x2〉 =
1

σ

what if a < 0? flow in complex space for a = −1, b = 1:
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left: highly unstable right: after transformation x(u) = u3
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FUN WITH COMPLEX LANGEVIN
STABILIZING JACOBIANS

do CLE in the u formulation and compute 〈x2〉 = 〈u6〉
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Im <x
2
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a+ib, b=1, x=u
3

〈x2〉 =
1

σ
=

a− ib

a2 + b2

take also negative a

CLE finds the analytically continued answer to negative a!

clearly needs more exploration − potential for stabilization
− affects convergence
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SUMMARY AND OUTLOOK
QCD AT NONZERO CHEMICAL POTENTIAL

prediction for the heavy quark corner

will be settled, using a combination of techniques and
effective models

challenge: light quarks

strong sensitivity to quark masses

effective models much less predictive

complex Langevin dynamics can handle

sign problem

Silver Blaze problem

phase transition

thermodynamic limit

in a variety of theories, but . . .
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SUMMARY AND OUTLOOK
QCD AT NONZERO CHEMICAL POTENTIAL

. . . correct result not guaranteed

. . . can convergence to wrong result

we have

developed better understanding

formulated criteria for correctness

a theoretical framework also applicable to SU(3) lattice
theory

tests of various ideas in SU(3) in progress

not yet exhausted . . .
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