Towards an Understanding of Star Formation: Scaling Relations in the ISM

Rahul Shetty,¹ Brandon Kelly,² Frank Bigiel,¹ Nurur Rahman,³ Eve Ostriker, ⁴ Alberto Bolatto,⁵ Paul Clark,¹ Ralf Klessen,¹ Lukas Konstandin,¹ Michael Burton⁶

¹Institute für Theoretische Astrophysik, Universität Heidelberg, Germany ²U. of California, Santa Barbara, USA ³U. of Johannesburg, South Africa ⁴Princeton, USA ⁵U. of Maryland, USA ⁶UNSW, Australia

ARI ITA LSW

ADELAIDE - 3 FEBRUARY, 2014

Overview

- □ The Kennicutt-Schmidt (KS) Relationship
- D Previous Results
- Fitting the KS relationship: Evidence for diffuse molecular gas

З

- ^D Outlook: other scaling relations
- Summary

Statistical Fitting

- Fitting method provides well defined statistics (OLS methods: y|x, x|y, bisector)
- ^D Hierarchical modeling for hierarchical data
- Hierarchical Bayesian fitting rigorously treats uncertainties, providing PDFs of all fitted parameters

8

^D Quantifying goodness of fit "By Eye"

Hierarchical Bayesian Fitting of KS Relationship

- Monte Carlo methods can account for statistical uncertainties. Bayesian inference is well suited for hierarchical problems, through MCMC methods (Kelly '07, Gelman + '04, Gelman & Hill '07, Kruschke '11)
- Developed and tested Bayesian method, accounting for uncertainties to fit KS parameters of individual galaxies and the population (Shetty + '13, '14)
- Analysis of resolved observations using 7 HERACLES (Leroy + '09, Bigiel + '08) galaxies and 13 STING galaxies (Rahman + '12)

The KS Relationship of the Bigiel + '08 Sample					
Gray lines: 50 random draws from the Bayesian posterior	C 5194 -1.0	NGC 5055 -1.5	NGC 3521	-1.0 - × -0.5 ^{1.5} - × -2.0	⁹⁴⁶ alaxies ×
Subject	Bayes A	Bayes $2\sigma_A$	Bayes N	Bayes $2\sigma_N$	Bayes $\sigma_{\rm scat}$
NGC 5194 (M51) NGC 5055 NGC 3521 NGC 6946 NGC 628 NGC 3184 NGC 4736	$\begin{array}{r} -2.84 \\ -3.20 \\ -3.20 \\ -2.81 \\ -2.89 \\ -3.24 \\ -2.83 \end{array}$	$\begin{array}{c} [-3.0, -2.7] \\ [-3.3, -3.1] \\ [-3.4, -3.0] \\ [-2.9, -2.7] \\ [-3.1, -2.6] \\ [-3.4, -3.1] \\ [-3.2, -2.4] \end{array}$	$\begin{array}{c} 0.72 \\ 0.87 \\ 0.90 \\ 0.78 \\ 0.76 \\ 0.92 \\ 0.92 \end{array}$	$\begin{matrix} [0.62, \ 0.83] \\ [0.79, \ 0.95] \\ [0.76, \ 1.03] \\ [0.70, \ 0.86] \\ [0.51, \ 0.95] \\ [0.79, \ 1.10] \\ [0.67, \ 1.20] \end{matrix}$	$\begin{array}{c} 0.06 \\ 0.04 \\ 0.05 \\ 0.11 \\ 0.05 \\ 0.05 \\ 0.08 \end{array}$
Group Parameters	-3.00	[-3.3,-2.7]	0.84	[0.63,1.0]	0.14
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\$					

Diffuse Molecular Gas?

- Presence of non-star forming molecular gas postulated by Elmegreen (1993). Chemistry matters, including metallicity, UV radiation field, ambient density, etc...
- M51 the most sublinear slope (0.72) in Bigiel + '08 sample (see also Blanc + '09): Broad wings in CO suggestive that 50% of emission is from a diffuse molecular component (Pety+ '13, see also Hughes, Meidt, Schinnerer + '13).
- From GRS survey (Jackson + '06), significant fraction of CO luminosity not assigned to 'GMCs'. After accounting for distance ambiguity, quantify the mass fraction...? (Roman-Duval, Clark, RS, Klessen).

Shetty, Clark, Klessen, '14, In Prep

17

Summary

- Extragalactic observations: 2 datasets evidence a mean sub-linear KS relationship, and sub-linear slopes for most galaxies (Shetty + '13,'14a)
- □ Implications:
 - \Box **T**_{dep} = 2 Gyr not representative timescale
 - ^D T_{dep} increases with CO traced surface density
 - indicative of a diffuse CO component? (Shetty + '14b)
- Detailed observations, including various tracers, along with statistical analyses will further our understanding of star formation in the ISM

19

Caveats

