

PWNe in young oxygen-rich supernova remnants as TeV sources for CTA

Ivo Seitenzahl ANU / CAASTRO

CTA OZ-meeting, 10 April 2017

Main Collaborators for this work: Fréderíc Vogt (ESO, Santiago) Jason Terry (UGA) Michael Dopita (ANU) Ashley Ruiter (ANU) Julie Banfield (ANU) Parviz Ghavamian (Towson U)

Tuguldur Sukhbold (OSU) Australian Government

Australian Research Council

My Background

Type la supernova

Interstellar medium

Interstellar medium

Type la supernova

Interstellar medium

Heavy element enrichment

Heavy element enrichment

Type la supernova

Heavy element enrichment

Type la supernova

Supernova remnant

Positron production

Interstellar medium

Heavy element enrichment

Type la supernova

Supernova remnant

Dissipation of kinetic energy / galaxy feedback / star formation

Positron production

Cosmic rays / high energy photons

theory for progenitor

N100 delayed-detonation

Seitenzahl+ (2013), MNRAS, 429, 1156

Movie by S. Ohlmann, Univ. Würzburg

Ohlmann+ (2014), A&A, 572, 57

N100 delayed-detonation

Seitenzahl+ (2013), MNRAS, 429, 1156

Movie by S. Ohlmann, Univ. Würzburg

Ohlmann+ (2014), A&A, 572, 57

Integral field spectroscopy of SNRs

			ana ana 🖉 a sa si 🍘 a			
			ana 🕐 man			Conception of the second
			ana 🖬 se 🌆 se sa			
					•	terror and the later of the
				-		
68-0 b)	+0 18-0	18-0	1.1-0	14-0	10-0 U.v.	a 14-0

Integral field spectroscopy of SNRs

(WiFeS)

ANU 2.3m Telescope

(Siding Spring Observatory)

Integral field spectroscopy of SNRs

Multi Unit Spectroscopic Explorer

ESO Very Large Telescope (VLT)

(MUSE)

(UT 4)

MUSE on UT4 "Yepun"

The Crab Nebula

Crab Nebula (not O-rich, but ejecta in optical)

source: wikipedia

Crab Nebula (not O-rich, but ejecta in optical)

source: wikipedia

Crab Nebula (not O-rich, but ejecta in optical)

source: wikipedia

Crab Nebula SED

Other SNRs

N132D

12.6h awarded in cycle 99A. Rank B, RA/DEC crowded. Convinced TAC to switch targets.

Tanaka & Takahara (2013) MNRAS, 429, 2945

Chandra view of G292, Park+, 2007

Our proposed MUSE mosaic of G292

Our proposed MUSE mosaic of G292

Tanaka & Takahara (2013) MNRAS, 429, 2945

Chandra ACIS RGB Credit: NASA/CXC/SAO

UT4 VLT Sinfoni [Fe II], Vogt, Seitenzahl et al., unpublished

Discovery of the products of Oburning in the ejecta of 1E0102

Discovery of [S II] with WiFeS

MUSE: fitted red- and blue-shifted [S II]

MUSE: fitted red- and blue-shifted [S II]

~1650 km/s blue shifted ejecta component

~1650 km/s blue shifted ejecta component

Hydrogen

Fitted red- and blue-shifted H-alpha

Fitted red- and blue-shifted H-alpha

Fitted red- and blue-shifted H-alpha

[O III] 5007

Dec. (J2000)

From photo-ionised precursor and coronal [Fe XIV] / [Fe XI] get shock velocities and upstream density/temperature

DEM L71

0509-67.5

0519-69.0

N103B

N49

Australian National University

