Gamma-ray bursts in the multimessenger era

Eric Howell

THE UNIVERSITY OF Western Australia

- 1. GRB overview
- 2. GRB topics @ UWA
- 3. GRBs: Fermi & CTA
- 4. GWs & Multimessenger era

771.14

5. Low Latency EM follow-up of GW triggers

Gamma-ray bursts

- > 10keV-GeV photons > 10⁵¹-10⁵⁴ ergs in few seconds
- > y-rays ultra-relativistic energy flow converted to radiation

4

6

redshift, z

8

10

BATSE – duration distribution

BATSE (1991-2000) >2000 GRBs detected

GRB categories – the popular picture

Swift : 2004 – 2019 + ?

- ≻ (15–150) keV
- > Over 700 bursts recorded
- > 10% are SGRBs
- > 2% are SGRB-EEs
- > Over 200 redshifts
- > Triggering complex

<u>UNITS</u>

Flux: ph s⁻¹ cm⁻² ; erg s⁻¹ cm⁻² Luminosity: ph s⁻¹ ; erg s⁻¹

GRB populations – 2 detectors

BATSE (1991- 2000) >2000 GRBs detected

Swift (late 2004-2019) >700 GRBs detected

GRB populations in the Swift era

L-GRBs (Type II) – soft spectra; hosts – irregular galaxies with star formation (?); progenitors – SNe (?); 200 with *z*

T90>2s (?)

SL-GRBs – lower luminosities than L-GRBs; lower *z*

UL-GRBs – T90>10,000s

S-GRBs (Type I) - harder spectra; hosts –
elliptical/early type galaxies – little star formation (?);
progenitors – compact binary mergers (?); ~10 with z
S-GRB-EE – pulse + extended emission ~100s

? = anomalous observations have provided exceptions to this framework

GRB overview
 GRB topics @ UWA
 GRBs: Fermi & CTA
 GWs & Multimessenger era
 Low Latency EM follow-up of GW triggers

GRB Research at UWA

Detector selection bias (Goddard, correlations)

Swift bias-Goddard, effect on high energy correlations

- Event rate estimation (GRB and GWs)
- Population studies

Estimating global parameters, Untangling populations

- ➢ GRB Follow-ups (Zadko, TAROT)
- Multimessenger studies

Estimating Swift triggering efficiency

 Swift - over 500 (650) triggering criteria – complex
 Working with Goddard Space Flight Centre to estimate the Swift Efficiency function*

* See Lien et al. (2014), ApJ, 783, 24 & Howell et al. (2014), MNRAS 444, 25

The Swift/aLIGO SGRB rate

Start with observed Swift SBRB rate from a strict sample
 Factor out detector selection bias to obtain true rate

$$R_{\text{SGRB}} = \sum_{i}^{n} \frac{1}{V_{i(\text{max})}} \frac{1}{F_r} \frac{1}{T} \frac{1}{\Omega} R_{B/S} B_i(\theta_j) P_{i(T_{90}; \text{P}_{\text{L}})}$$

Coward, Howell, Piran et al. (2012), MNRAS 425, 2668

The observation time dependence of Swift L-GRBs

Observation-time: waiting time to detection – taken from when a detector is switched on

Successively rarer events as a function of time – PEH data 🔷 🔷

- > Can the PEH sample provide insight ?
- > How can you model this sample ?

PEH - Coward & Burman, (2005) MNRAS , 361, 362

The observation time dependence of Swift L-GRBs

Observation-time: waiting time to detection – taken from when a detector is switched on

Successively rarer events as a function of time – PEH data 🔷 🔷

> Model the PEH sample to provide insight

Howell & Coward, MNRAS, 428, 167, 2013

PEH - Coward & Burman, (2005) MNRAS , 361, 362

The Log z – Log T relation

Introduce an observation time dependence to a number count distribution through Poisson statistics

Howell & Coward, MNRAS, 428, 167, 2013

Swift: Log Z – Log T

Log z – Log T for Swift L-GRBs based on parameters determined from a Log N-Log P distribution

Howell et al.(2013), MNRAS, 428, 167

Log Z – Log T to separate different GRB populations L-GRBs + SL-GRBs

Howell & Coward, MNRAS, 428, 167, 2013

Log P – Log T as a predictive tool - application to Swift Peak Flux data

Howell et al.(2007), ApJ L666, L65

Constraining the GRB LF – degeneracy

Degeneracy between the LF and source rate evolution Require an independent test

The Swift rate and LF

10/12

Iterative procedure using log N-log P and Log L-log T
 Best results support a rate 0.8 Gpc⁻³ yr⁻¹ with a steep
 high end slope (this is supported by other recent studies)

Howell et al. (2014), MNRAS 444, 25

- 1. GRB overview
- 2. GRB topics @ UWA
- 3. GRBs: Fermi & CTA
- 4. GWs & Multimessenger obsservations
- 5. Low Latency EM follow-up of GW triggers

Fermi GRBs

Fermi GBM – 8-30 MeV - 4x10⁻⁸ erg s⁻¹cm⁻² - almost all sky

Fermi LAT – 0.02-300 GeV 6x10⁻⁹ erg s⁻¹cm⁻² 2.4pi sr

~250 GRBs/yr detected by GBM > 40 GRBs detected by LAT in first 4 yrs

> 10GeV photons detected(EGRET detected > 100MeV photons)

Fermi High and Low Energy Emissions

GeV emission:

- delayed onset GeV wrt MeV emission
- GeV longer lived than MeV emission
- evident in both long and short duration Fermi GRBs

Extra components observed in both long and short GRBs

Short GRB 090510

- I) Band function
- II) Pseudo-Thermal
- III) Hard power law component

MeV – synchrotron GeV - ?

Fermi GRBs – GRB 130427A

- z=0.34 (average Luminosity burst but very close)
- Highest recorded fluence >10⁻³ erg cm⁻²
- Highest observed photon energy 95 GeV (128 GeV in rest frame)
- Longest lasting GeV emission 19 hours
- > LAT spectrum becomes harder after GBM spectrum has faded

GRBs with CTA

Fermi Observations	 - Delayed onset & distinct GeV spectral component - Long lived GeV emission 					
Fermi LAT		СТА				
0.6m ² @ 10 GeV – limited statistics		Large eff area (~ 10^4 greater @ 30 GeV)				
GRB photon flux falls with	E	LSTs – less effected by EBL				
Better FoV and duty cycle		Fast response (180 deg slew in 20-30s)				
		1-2 GRBs/yr (BUT photon rich)				

Funk, Hinton for CTA Consortium, 2013, Astro. Phys, 43, 348

- 1. GRB overview
- 2. GRB topics @ UWA
- 3. GRBs: Fermi & CTA
- 4. GWs & Multimessenger era
- 5. Low Latency EM follow-up of GW triggers

Expected Detection Rates

C .	Estimated	$E_{\rm GW} =$	$10^{-2} M_{\odot} c^2$			Number	% BNS Localized	
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	LIGO Virgo		$5 \mathrm{deg}^2$	$20\mathrm{deg}^2$
2015	3 months	40 - 60	<u>111</u> 20	40 - 80	5 <u>11-17</u> 3	0.0004 - 3	7 <u></u> 7	<u>4</u> 2
2016 - 17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017-18	9 months	75 - 90	40 - 50 🕻	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
2019 +	(per year)	105	40 - 70	200	65 - 130	0.2 - 200	3 8	8 - 28
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

LIGO Scientific Collaboration

>900 members, >80 institutions, 17 countries

GW-EM Follow-up program

LVC/partner astronomers MoU STATUS

Australian Involvement: CTA, MWA, ASKAP (VAST), AAT, Skymapper, Zadko, GOTO, Zadko Multimessenger astrophysics with GWs

Three main strategies for coordinated GW/EM observations:

- EM follow-up of GW Triggers
- > EM Triggered archival GW searches
- GW parameter refinement through EM observations

GW detection pipeline

- Low-latency data analysis
- Position reconstruction
- Host Galaxy Identification
- False Alarm Rate estimation (significance)
- Communication of Triggers

- 1. GRB overview
- 2. GRB topics @ UWA
- 3. GRBs: Fermi & CTA
- 4. GWs & Multimessenger era
- 5. Low Latency EM follow-up of GW triggers

Image provided by the Max Planck Institute for Gravitational Physics/Zuse Institute Berlin

Compact binary coalescence – chirping waveform

Short hard GRBs (SGRBs)

SGRBs strongly linked to compact binary NS/NS and/or NS/BH mergers

Evidence includes:

- Dynamical timescale of disks consistent with duration of GRB
- > Lack of association with star formation and SNe
- Distance from host (few kpc) suggests kicks from NS/NS, NS/BH mergers
- ≻ Kilonova

Kilonova - observations

- > NS/NS mergers create significant quantities of neutron-rich radioactive species
- > Radioactive decay produces a fain transient kilonova

Low-latency follow-ups

Chu,Howell,Rowlinson,Zhang,Gao & Wen, MNRAS in prep, 2015

Low latency performance

Table 2. The percentage of detected sources within the aLIGO/AdV horizon and localisation error regions determined at different times prior to merger for different detector networks.

Detector network		Time before merger						
		40s	10s	1s	0s			
LHV	Percentage detected	9%	35%	76%	100%			
	Error region of $[10\%/50\%/90\%]$ of detections $[deg^2]$	302/1000/2163	73/269/782	23/79/240	5.4/18/54			
LHVJ	Percentage detected Error region of $[10\%/50\%/90\%]$ of detections $[deg^2]$	8% 240/815/1595	32% 48/198/471	76% 12/44/121	100% 3/11/30			
LHVI	Percentage detected	9%	33%	75%	100%			
	Error region of $[10\%/50\%/90\%]$ of detections $[deg^2]$	119/383/914	39/130/349	12/39/105	2.7/8.8/ 24			
LHVA	Percentage detected	9%	35%	76%	100%			
	Error region of $[10\%/50\%/90\%]$ of detections $[deg^2]$	76/312/850	26/91/248	8.6/27/76	1.9/6.3/17			
LHVJI	Percentage detected	8%	32%	75%	100%			
	Error region of $[10\%/50\%/90\%]$ of detections $[deg^2]$	95/339/833	33/111/296	9/28/78	2.2/7.0/18			
LHVJIA	Percentage detected	9%	33%	75%	100%			
	Error region of $[10\%/50\%/90\%]$ of detections $[deg^2]$	60/183/402	21/61/135	5.9/18/42	1.4/4.3/9.7			

Chu, Howell, Rowlinson, Zhang, Gao & Wen, MNRAS in prep, 2015

EM follow-up prospects - LHV

TARGET	TIME RANGE (s)	Gamma		X-ray	Optical/IR	Radio		
		High (> 10 MeV)	Low (< 10 MeV)			High (> 1 GHz)	Low (< 1 GHz)	
FRB (early)	-5-10					?	?	
SGRB Prompt	0-5	1	1	1	1	?	?	
Early engine	0-1000	?	✓	1	1	?	?	
FRB (late)	10-10000					?	?	
Reverse shock	60-10000	?		1	1	1	1	
Afterglow	100s->	1		1	1	1	1	

- Detection 40s pre-merger

- 40s reaction latency (to send out trigger)

- LHV network

- 1000 deg² error region (50% case)

Radio	Large FoV and fast response (~mins) potential
Optical	Potential for fast responses
Low gamma and X-ray	Confident science return – response ToO very slow at present
High gamma – CTA	Large FoV and fast response (< min)

Chu, Howell, Rowlinson, Zhang, Gao & Wen, MNRAS in prep, 2015

EM follow-up prospects-LHVJIA

TARGET	TIME RANGE	Gamma		E Gamma X-ray Opti	Gamma		Optical/IR	Radio		Radio]		
	(s)									Response fast enough				
		High	Low			High	Low			FoV within range				
		(> 10 MeV)	(< 10 MeV)			(> 1 GHz)	(< 1 GHz)			Fast response				
FRB (early)	-5-10					2	2			FoV too small				
						•				Response too slow				
SGRB Prompt	0-5	1	1	1	1	2	2			FoV within range				
	0.4000					•				Response too slow				
Early engine	0-1000	?	\checkmark	1	1	?	?			+ FoV too small				
	10 10000								/	Observed				
FRB (late)	10-10000					?	?		<u> </u>					
	60.40000								>	Predicted				
Reverse shock	60-10000	?		1	1	1	1							
Afterglow	100s->	1												

- Detection 40s pre-merger
- LHVJIA network

- 1s reaction latency (to send out trigger)
 182 deg² error region (50% case)
- Both the improved error region and reaction latency provides greater opportunities for breakthrough science
- > It could be argued that most of the breakthrough science requires a fast response
- Clear motivation for Swift/Fermi to employ some sort of fast triggering pipeline

Chu, Howell, Rowlinson, Zhang, Gao & Wen, MNRAS in prep, 2015

GWs and CTA

100 GeV – require t_{start} <50s for 1000 deg² error region
 100 GeV – require t_{start} <200s for 200 deg² error region
 Sub TeV photons @ aLIGO/AdV range not effected by EBL
 (EBL models : Stecker, Malkan & Scully 2006; Dominguez et al. 2011)

Bartos, I. et al., MNRAS, (2014), 443, 738-749

Image provided by the Max Planck Institute fo Gravitational Physics/Zuse Institute Berlin

THANKS